Doctorate School in Earth Science and Fluid Mechanics (ESFM) - XXXII Cycle Postgraduate Diploma Programme in Earth System Physics - year 2016/2017 (II Term)

Program of the course:
Geophysical Fluid Dynamics (ESP-GFD)

- Introduction to Geophysical Fluid Dynamics (GFD): Scales of motion in GFD - Importance of rotation and of stratification - Principal distinctions between atmosphere and oceans
- The rotating frame of reference: The Coriolis force and the centrifugal force - Motion of a free particle on a rotating frame: inertial oscillations - Acceleration on a three-dimensional rotating planet
- The governing equations of GFD: Momentum equations - Mass conservation - Energy equation - Equation of state - The Boussinesq approximation - Scales of motion in geophysical flows: further simplifications of the governing equations - The Rossby and Ekman numbers: link with the Reynolds number
- Rotation 1: Geostrophic balance: Homogeneous geostrophic flows - The Taylor-Proudman theorem - Homogeneous geostrophic flows over an irregular bottom - Generalization to nongeostrophic flows - Vorticity dynamics: definition of potential vorticity
- Rotation 2: The importance of friction: The bottom Ekman layer - The surface Ekman layer The Ekman layer over uneven terrain - The Ekman layer in real geophysical flows
- Rotation 3: Barotropic waves: The Kelvin wave - Inertia-gravity waves (Poincarè waves) Planetary waves (Rossby waves) - Topographic waves - Analogy between planetary and topographic waves
- Stratification 1: Static stability - The Brunt-Vaisala frequency - The Froude number Combination of rotation and stratification
- Stratification 2: Mixing of stratified fluids - Kelvin-Helmoltz instability - Instability of a stratified shear flow - Taylor-Goldstein equation and the Richardson number - Turbulence in a stratified shear flow - The Monin-Obukhov length

Reference text: Introduction to Geophysical Fluid Dynamics, by B. Cushman-Roisin, Prentice-Hall.

