MANY-BODY PHYSICS

Syllabus

Alexander A. Nersesyan

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Master degree course

Years: 2011-2012, 2012-2013

1 PHONONS

1. Lattice dynamics in one dimension

- Classical harmonic chain. Continuum limit and sound waves in elastic string
- Quantum approach: acoustic phonons
- Lattice with a basis: optical phonons
- 2. Lattice dynamics in three dimension
- 3. Thermodynamics: Debye model
- 4. Lattice stability; role of dimensionality

2 MAGNONS

1. Exchange Hamiltonian

- 2. Spin waves in ferromagnets
 - Holstein-Primakoff transformation
 - Equations of motion
- 3. Spin waves in antiferromagnets
- 4. Broken symmetry, Goldstone modes and quantum fluctuations

3 ELECTRONS

- 1. Free electrons
 - Thermodynamics
 - Particle-hole excitations in an ideal electron gas. Dynamical formfactor

2. Effects of Coulomb interaction

- Static screening and plasma oscillations
- Random Phase Approximation
- 3. Electrons on a lattice
 - Tight-binding model. Band spectrum
 - Bloch oscillations
 - Electrons on a diatomic chain: ground state energy and charge density wave
 - Types of band spectrum in two and three dimensions

4 ELECTRON-PHONON INTERACTION IN ONE-DIMENSIONAL SYSTEMS

- 1. Electron-phonon interaction
- 2. Peierls insulators
- 3. Soliton excitations

Supplementary material:

- 1. Specific heat of ideal Femi gas. Sommerfeld method
- 2. Mean-field approximation: Ising model
- 3. Linear response theory
- 4. Brief introduction to Green's functions and Feynman diagrams. RPA by diagrammatics